Fourier series of finite products of Bernoulli and Genocchi functions
نویسندگان
چکیده
In this paper, we consider three types of functions given by products of Bernoulli and Genocchi functions and derive some new identities arising from Fourier series expansions associated with Bernoulli and Genocchi functions. Furthermore, we will express each of them in terms of Bernoulli functions.
منابع مشابه
Sums of finite products of Genocchi functions
In a previous work, it was shown that Faber-Pandharipande-Zagier and Miki’s identities can be derived from a polynomial identity which in turn follows from a Fourier series expansion of sums of products of Bernoulli functions. Motivated by this work, we consider three types of sums of finite products of Genocchi functions and derive Fourier series expansions for them. Moreover, we will be able ...
متن کاملFourier expansions for Apostol-Bernoulli, Apostol-Euler and Apostol-Genocchi polynomials
We find Fourier expansions of Apostol-Bernoulli, Apostol-Euler and Apostol-Genocchi polynomials. We give a very simple proof of them.
متن کاملFourier series of sums of products of ordered Bell and poly-Bernoulli functions
In this paper, we study three types of sums of products of ordered Bell and poly-Bernoulli functions and derive their Fourier series expansion. In addition, we express those functions in terms of Bernoulli functions.
متن کاملNon Uniform Rational B Spline (NURBS) Based Non-Linear Analysis of Straight Beams with Mixed Formulations
Displacement finite element models of various beam theories have been developed traditionally using conventional finite element basis functions (i.e., cubic Hermite, equi-spaced Lagrange interpolation functions, or spectral/hp Legendre functions). Various finite element models of beams differ from each other in the choice of the interpolation functions used for the transverse deflection w, tota...
متن کاملSeries of sums of products of higher-order Bernoulli functions
It is shown in a previous work that Faber-Pandharipande-Zagier's and Miki's identities can be derived from a polynomial identity, which in turn follows from the Fourier series expansion of sums of products of Bernoulli functions. Motivated by and generalizing this, we consider three types of functions given by sums of products of higher-order Bernoulli functions and derive their Fourier series ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
دوره 2017 شماره
صفحات -
تاریخ انتشار 2017